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Integrating Cognitive and Psychometric Models

to Measure Document Literacy

Abstract

The Survey of Young Adult Literacy conducted in 1985 by the

National Assessment of Educational Progress included sixty-three

items that elicited skills in acquiring and using information from

Wmwritten documents. These items were analyzed in two distinct r-0

ways: (1) with an item response theory (IRT) model, which CWO

characterized items' difficulties and respondents' proficiencies

as revealed simply by tendencies toward correct res- '2)

a qualitative cognitive model, which characterize-4  s

of the processing tasks they required. This p .J .es

how a generalization of Fischer and Scheiblechner'. ,.ear

Logistic Test Model can be used to integrate information from the

cognitive analysis into the IRT analysis.

Subject Terms: Bayesian estimation; cognitive processing models;

Item Response Theory; Linear Logistic Test Model; literacy

assessment; National Assessment of Educational Progress I For
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1.0 Introduction

Perhaps the most important thrust in educational measurement

today is, in Burstein's (1983) words, "... linking achievement

testing to the cognitive processes employed in giving test

responses and to the instructional experiences of students."

Standard item-response theory and classical true-score

psychometric models, while often providing practically useful

summaries of the overall proficiencies of examinees and of the

relative difficulties of items, do not do this. Cognitive-

processing models, on the other hpnd, are typically qualitative,

descriptive, and poorly suited to the broadly cast decision-making

problems often encountered in educational practice. A recent line

of development, therefore, has been to study the characteristics

of psychometric items as cognitive tasks, using psychometric

theory to summarize test data for action but cognitive theory to

construct and analyze the test (Embretson, 1985).

This paper describes the implementation of such an approach

in the construction and analysis of the Document Literacy scale in

the Survey of Adult Literacy (Kirsch and Jungeblut, 1986), a study

carried out under the auspices of the Nation!1 Assessment of

Educational Progress. After a brief overview of the Adult

Literacy project, we outline (i) a cognitive-processing model

proposed for solving the exercises, (ii) a psychometric model for

the test, and (iii) a structure relating item parameters in the

psychometric model to item features that are salient in the

cognitive model, based on Mislevy's (1988) extension of



Scheiblechner (1972) and Fischer's (1973) linear logistic tast

model (LLTM).

2.0 An Overview of the NAEP Literacy Assessment

In 1984, the U.S. Department of Education provided funding

for a nationwide assessment ot the literacy skills of America's

young adults, ages 21 through 25. The assessment was designed and

carried out by the National Assessment of Educational Progress

(NAEP) over the three year period from 1984 to 1986. A major

innovation of the NAEP design was to call for a sec of 1"teracv

tasks that simulate the diverse literacy demands of adult

interactions in occupational, social, and educational settings.

Implementation of this design led to a definition of literacy that

encompassed three distinct skill areas:

o document literacy -- the skills needed to locate and use

information contained in non-prose formats such as forms, tables,

charts, signs/labels. indexes, schematics, and catalogues:

o prose literacy -- the skills needed to understand and use

informatiun from texts such as editorials, news stories and poems:

and

o quantitative literacy -- the skills needed to perform

arithmetic operatiops that are embedded in printed materials such

as check hook registers, order forms, nd loan advertisements.

NAEP developed a total of ninety-three literacy tasks.

sixty-three of which were classified as measuring document

literacy, fifteen as measuring prose literacv, and fifteen as

3



measuring quantitative literacy. Most involved open-ended

responses. For example, respondents were directed to: fill in a

deposit slip; dctermine 2ligibility from a table of employee

benefits; fill out an order form taken from a catalogue; and

follow a set of directions to travel from one location to another

using a map.

Trained interviewers administered the literacy tasks to a

nationally representative household sample of approximately 3.600

young adults living in the 48 contiguous United States, using an

item sampling design under which each task was administered to

approximately 1,500 respondents. The procedures and the results

of the assessment are detailed in Kirsch & Jungeblut (1986). In

this paper, we describe a secondary analysis that was conducted to

inestigate correlates of task difficulty. Due to the small

numbers of tasks available for measuring prose literacy and

quantitative literacy, our analysis is restricted to the sixty-

three tasks which comprise the document literacy scale.

3.0 A Cognitive Model for Document Literacy

A cognitive processing model for performance on document

literacy tasks has been proposed by Kirsch and Mosenthal (1988).

The model posits a solution process that can be summarized in the

following four steps: (1) Identify the information given and

requested in the task directive; (2) search the document until the

requested information has been located; (3) make a match between

the information identified in the document and the information
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requested in the directive; and (4) determine whether the nat 'hi

adequately meets the criterion of the task.

As part of an earlier study of the factors influencing

document task difficulty, Kirsch and Mosenthal developed a system

to describe the complexity and organizational structure of

documenLs and of the directives associated with document literacy

tasks. This system, based on a significant revision uZ

Mosenthal's (1985) taxonomic grammar of the expository continuum.

characterizes the information contained in documents and document

task directives according to three basic levels of organization:

(1) the organizing category or OC, (2) the specific category or

SPE, and (3) the semantic feature. These three levels of

organization constitute three nested categories: semantic features

are properties of pieces of information that belong to specific

categories, which are nested within distinct organizing

categories. Specific categories can also be nested within other

specific categories. !r Fact, the more complex the document, the

more likely it will be to find several levels of nesting of SPEs.

To illustrate these levels, consider the medicine label

given in Figure 1. This document has three organizing categories:

(1) the purpose for taking the medicine, (2) the recommended

dosage levels, and (3) the list of cautions. Within the "Purpose"

OC are two SPEs, one specifying that tue medicine can be taken for

"stuffed noses" and one specifying that it can also be taken for

"running noses". The "Dosage" OC also contains two SPEs. one

containing information specific to adult dosages and one

-- , ,mm m m mmmm m m m mmn un 5



containing informati, ecific to children's dosages. Tht

"Caution" OC, which is the ,,ost complex, contains four I-'-Ii,

SPE's and three level-two SPEs. These levels are illustrated iri

Figure 2, which provides a full linguistic representation, or

parsing, of the medicine label. The reader should see Kirsch and

Mosenthal (1988) for more information about this new grammar.

Insert Figures 1 and 2 about here

Based on this grammar, Kirsch and Mosenthal defined a numKt-r

of variables, which, according to the processing model, would b,-

expected to correlate with task difficulty. These variables hav'e

been classified into three distinct types: (I) Materials

variables, which characterize the length and organizational

complexity of the document to which a task refers; (2) Directi.ive

variables, which characterize the length and organizational

complexity of the task directive; and (3) Process variables,

characterize the difficulty of the task solution process.

The Materials variables are

(1) the number of OCs in the document;

(2) the number of OCs in the document that are embedded:

(3) the deepest level of embedding for an OC;

(4) the number of SPEs in the document;

(5) the number of SPEs in the document that are embedded ind

(6) the deepest level of embedding for an SPE.

The Directive variables are

1, the number of OCs in the directive:

6



(2) the number of OCs in zho directive that are embedded

(3) the deepest level of embedding for an OC;

(4) the number of SPEs in the Directive;

(5) tl.e number of SPEs in the Directive that are Embedded: and

(6) the deepest level of embedding for an SPE.

The ?rocess variables are defined as follows:

(1) Degree of Correspondence (DECCORR). This variable refers to

the explicitness of the match between the information requested in

the directive or question and the corresponding information in th-

text. It is scored on an integer scale ranging from one to five

with higher values indicating less explicit correspondence and

therefore, more ditficultv. For example. tasks requiring a single

literal match are scored one, tasks requiring an inferential text-

based match are scored three, and tasks requiring matches based on

specialized prior knowledge are scor d five.

(2) Type of Information (TYPINFO). This variable concerns the

type and number of restrictive conditions that must be held in

mind in identifying and matching features. It too is scored on i

one to five scale with lower values indicating less restrictie

conditions.

(3) Plausibility of Distractors kDEGPLAUS . Documer

typicall; require the e:xaminee to skim n eiti' eo- ,

to locate i piece of requested information. S i. t1

information embe dded in -he document cotild be inis e I te

reqllested I"horme- tior. te -:vp ica interpre to

"d,;itractor", that i;, :he in'orectaltcrnat



multiple-choice item, is not appropriate for document tasks.

Instead, document task "distractors" include all pieces Of

information embedded in the docunent. The degree of plausibility

of a distractor is measured by the ext- nt to which the i nformat ion

embedded in the document shares semantic information witi, the

correct answer to t_,e question or directive, but does not satisf,

all conditions speuified. This variable is scored on a one to

five scale with lower numnbers indicating more shared semantic

Information and higher numbers indicating less.

The relationship between these three sets of variables and

the four-step processing model can be stated as follows The

Directive variables characterize the difficulty of Step 1,

identifying the information given and requested in the ta.k

directive; the Materials variables characterize the difficulv or

Step 2, searching the document for requested information: and the

Process variables characterize the difficulty of Steps 3 and 4.

matching information and determining whether the criterion of the

task has been satisfied.

Kirsch and Mosenthal (1988) succeeded in parsing sixty-one

of the sixtv-three docL,. nt tasks, then scored the sixtv-ore in

terms of the Materials, Directives, and Process variables usinF,

the scoring instructions in the appendices o their report. The

resultq appear in Table I: correlation: among tV variables appear

in Table 2. (Because the level of OC and SPE embeddings for the

document 11ieracv task directives were almost entirt lv at the

fi r t l ,' 1 . not til nt the di ect ive embeddin var-iahs.
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tabulated.) Task 46 is based on the Medicine Label. The

reliability of the scoring was checked by training a third scorer

and observing the proportion of exact agreement in rescores of

one-third of the documents; the (very satisfactory) results are

given in Table 3.

Tables 1-3 about here

Kirsch and Mosenthal regressed task proportions-correct on

these task features in the total survey sample and in selected

subpopulations. An adjusted R2 of .87 resulted, with the

strongest predictors being numbers and embedding of OCs, and the

plausibility of distractors. This result provided empirical

confirmation that the task attributes identified bv the processint

model did indeed largely account for task difficulty. The

analysis addresses only average difficulty within populations,

however, and provides no link between individuals' overall

performance on the set of tasks and their expected success with

docum-ents and tasks with varying structures--the type of

information required to target instruction to individual students

and to design documents for specified types of users.

4.0 A Psychometric Model for Measuring Task Difficulty

In contrast, the expected outcomes of the confrontations

between particular examinees and tasks are addressed by the

response scaling methodology called item response theory , IRT:

Lord, 1980). Unidimensional TRT models express the probabilit'

that an examinee will respond correctly to a particular test item
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as a function of a single parameter that characterizes the

proficiency of the examinee, and one or more additional parameters

for each item that characterize measurement properties such as i~s

difficulty. An important feature of IRT scaling is that the

proficiency levels of all respondents can be repurced on the same

scale even when different individuals have been administered

different subsets of tasks, as in the NAEP literacy assessment.

In this paper, we use the Rasch IRT model (Rasch, 1960) to

exemplify the process of measuring task difficulty with a

psychometric model. Let xj denote the response of examinee i to

task j. Assume that responses are dichotomously scored, with I

indicating a correct response and 0 indicating an incorrect

response. The standard Rasch model gives the probability of a

correct response as

PJ(O,) = P(Xij = 1 0"0j)

= exp(t1 -/j) ()

1 + exp(O.-3,)

where 0. characterizes the difficulty of task j and ,

characterizes the proficiency of examinee i. Under the usual

assumption of conditional independence, the probability of a

respondent's pattern x, = (x.... 19 of responses to n tasks is

obtained as

P (x , 1 . H P , x- ,

10
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where Q,(9) = I - P,(9) and = ( ..... )' The Drobab i i ,1 oi t

data matrix X = (x, x..., X5)' of responses from N examine-

responding independently can be obtained as

P(XG,#) - R P(x,1 9i,P) , (3)
i

where 0 = (s..... #N) Once X has been observed, Equation 3 can

be interpreted as a likelihood function, and provides a basis for

estimating the parameters 6 and fl.

Table 4 gives Rasch item parameter estimates obtained with

Mislevy and Bock's (1984) BILOG computer program tor the sixty-one

literacy tasks that were parsed, on a scale in which the

distribution of 9 has a mean of zero and a standard deviation of

one. Shown with estimates of the difficulty parameters are their

(approximated) standard errors of estimation, or a. Item 46 is

the Medicine Label item, which with a difficulty parameter

estimate of -2 is one of the easier items. A value of 0 could be

estimated for any respondent, and, via (i), the expectation of a

correct response from that respondent to this item or any other

could be calculated.

Table 4 about here

IRT models sucn as the Kasch model ate widely acccptcd isu

useful tools for creating and analysing tests, adding precision

and flexibilitv to the ways that examinees' proficiencies can be

measured and compared. Note, however, that these models make no

reference to the cognitive processes which an examinee must emplov

11



in order to have a high probability of making a correct respons,;

nor do they address the features of tasks that make thlim

difficult. The model parameters merely indicate the relative

proficiencies of respondents (9) and the relative difficulties of

tasks (6) in the skill area considered.

5.0 An Integrated Approach

In a pioneering step toward integrating cognitive and

psychometric models, Scheiblechner (1972) and Fischer (1973)

posited a constrained Rasch model for item responses, the Linear

Logistic Test Model (LLTM). In this model, task difficulty

parameters are estimated as linear combinations of a smaller

number of more elementary components. The elementary components

are defined to reflect differences in the cognitive processing

demands of the tasks. This approach represents a significant

advance beyond standard IRT procedures, because it exploits

auxilliary information about the cognitive processing demands of

tasks to address why some tasks are more difficult than others.

To apply the LLTM to a set of test data, the usual response

matrix X must be augmented with information pertaining to the

processing demands of each test item. This information is

expressed in terms of a set of K variables characterizing features

of the items which are salient in the cognitive processing model.

Examplos include (i) Fischer's (1973) calculus example, in which

items are characterized in terms of the number and type of

operations a pupil must carry out in order to solve a

differentiation problem, and (ii) the document literacy variables

12



which were defined in the previous section. Let q, ..... q,:. derote

the item feature variables defined for the jth item. The LLTM

assumes a Rasch model for task difficulty, but constrains the

difficulty parameters 0, as foliows:

K

6;= Z qkj Y7k for j - 1... n (4)

k=l

or, in matrix notation 6 = Q', where Q' is an n by K matrix of

item feature data and 7 = ('u1....K)'

The original goal of explaining all of the reliable

variation in item parameters by item features was not realized

(Fischer and Formann, 1982), as rigorous tests of the sufficiency

of the LLTM against the unconstrained model failed with few

exceptions. It was often possible, however, to account for large

portions of variation among item difficulties in terms of

substantively meaningful item features, thus providing insights

into the effects of educational treatments and helping to identify

flawed items as unexpectedly easy or hard in light of the features

that were expected to determine their operating characteristics.

A less restrictive method for incorporating cognitive

processing information into a psychometric model has been proposed

by Mislevy 41988). This alternative approach combines key aspects

of the LLTM with the exchangeability c~nce-t of Bayesian inference

(Lindley & Novick, 1981). As in the LLTM, differences in the

cognitive processing demands of tasks are accounted for by

regressing task difficulty on a smaller set of more elementary

13



-imponlents. Unlike the LLTM, however, parameter estimates

obtained from the fitted regression model are not e-pected to

account for all of the variation in true task difficulties.

Instead, the expectation that true task difficulties will be

distributed about the central values predicted by the fitted

regression model is accounted for by (i) positing that the

difficulty parameters of tasks with similar values of the item

feature variables are exchangeable members of a common population;

and (ii) imposing this task-population structure on the task

difficulties, by means of Bayesian prior distributions.

In Mislevy's (1988) implementation of the approach, the

prior distribution for individual task difficulties was assumed to

be multivariate normal with mean Q'n and variance 021, where the

mean structure is defined as in the LLTM. This model was fitted

as a two-stage empirical Bayes (EB) regression model:

unconstrained difficulty parameters for individual tasks (as in

Table 4), estimated in the first stage, provide data from which to

estimate the unknown parameters n and 02 of the assumed item-

parameter distribution in the second stage. Computational details

are provided in that reference. Final task difficulty estimates

,3 are precision-weighted combinations of the unrestricted Rasch

estimates and the iegression estimates qj'q:

p3 = (wqq 1 + wZjpj)/(w1 j + w2 j)

14



where w,, - I/$
2 and w2, = 1/a2,. The final task difficultv

estimates can be viewed as a compromise between LLTM estimates,

where items with identical features are constrained to have

identical difficulty estimates, and standard Rasch difficulty

estimates, where information about item features is ignored.

Like the LLTM, this approach provides a link between the

cognitive processing model assumed to be influencing task

responses and the tasks' resulting difficulties. To the extent

that the structural model for item parameters fits, it provides a

basis for understanding just what makes items difficult. It is a

powerful argument for the construct validity of a test if it can

be shown that item difficulties are determined predominantly by

manipulable features in a cognitive model built around the skills

intended to be measured (Embretson, 1985). To the extent that the

model does not fit, it identifies unexpectedly hard or easy items.

information that should prove useful for item construction.

6.0 Application to the Document Literacy Scale

As described above, both the cognitive processing analysis

and the psychometric analysis were first applied to the Document

Literacy data separately. The variables in Table 1, resulting

from parsing the tasks, signify salient features of the items as

indicated by the cognitive processing model, and provide insights

into their processing requirements. The unrestricted Rasch

difficulty estimates (3) in Table 4 indicate the difficulty of

tasks from a purely empirical point of view. We now apply, the

integrated model described in the preceeding section.

15



In considering variables to include in the augmented data

matrix, Kirsch and Mosenthal's (1988) results were used to

eliminate three of the parsing variables: (i) the deepest' level

of OC embedding in the Materials, (ii) the deepest level of SPE

embedding in the Materials, and (iii) the deepest level of OC

embedding in the Directives. Univariate distributions were

tabulated for the nine remaining item feature variables, and

transformations were applied to eliminate extreme asymmetries: a

square root transformation for the "Number of OC's" variable, a

logarithmic transformation for "Number of SPE's", and logit

transformations for "Number of Embedded OC's" and "Number of

Embedded SPE's" after expressing them as proportions of total OC's

and SPE's respectively. In addition, both the Materials variables

and the Directive variables were centered and scaled to have a

mean of zero and variance 1. Because the Process variables

represent ordered categories, rather than counts, these variables

were centered by recoding the original values of I to 5 as -i to

3. These rescaled variables were used in all subsequent analyses.

The parameter estimates obtained from fitting a two-stage

Empirical Bayes regression model to these data are given in Table

5. They include the estimated coefficients for the intercept term

and the nine item feature variables (?7,,77 . t,) , and the

estimated standard deviation for the normal distribution of

residuals of the task difficulty parameters from their expected

values. Because the model was estimated from standardized data.

16



the magnitude of the coefficients provide an indication of -he

relative contribution of each variable to expctLed difficulty.

Insert Table 5 about here

To further investigate the contribution of each item feature

variable to variation in predicted task difficulty, three

alternative models were estimated: (1) a model that excluded the

Materials variables; (2) a model that excluded th e Directive

variables; and (3) a model that excluded the Process variables.

The estimated coefficients for these three alternative models are

also shown in Table 5. Note the similarity of the coefficients

listed for the Materials variables in the Full model and in the

model which excluded the Directive variables (Model =2), and the

similarity of the coefficients listed for the Directive variables

in the Full model and in the model which excluded the Materials

variables (Model l). These similarities are a result of the low

correlation between the Materials variabl1s alLd the Directive

variables By contrast, the coefficients of both the Materials

variables and the Directive variables changed from the Full model

to the model which excluded the Process variables (Model =3).

These changes are a result of the higher correlations between the

Process variables and the Materials variables and between the

Process variables and the Directive variables. Because Model =3

is not contaminated by Process variable correlation, its

coefficients provide the most accurate picture of the relative

contributions to predicted task difficulty provided by the

17



Materials variables and the Directive variables. in particular.

when the process variables are excluded, task difficult; increases

most rapidly with the No. ot SPEs in the Materials and the No. of

SPEs in the Directive. Increasing the No. of OC's in the

Directive and in the Materials also increases task difficulty, but

not by as much. Bv far, the smallest contribution to task

difficulty is provided by the OC and SPE embedding variables.

Table 5 also lists approximate R2 values for each model. In

the standard regression setting, the R2 statistic is calculated as

the ratio of explained variation to total variation. In this

application, true task difficulties are unobservable so total

variation is approximated using the variation observed in the EB

estimates f. Several conclusions can be drawn from the R2 values.

First, differences in the cognitive processing demands of document

li.-cracy tasks, as measured by the cognitive processing variables

proposed by Kirsch and Mosenthal, account for approximately 80% of

the observed variation in task difficulty. Second, the largest

contribution to explained variation is provided by the Process

variables. When these variables were excluded from the model, the

R2 statistic dropped by more than 20 points. This indicates that

the Process variables are tapping an aspe c of task difficulty

that is not well predicted by either the Materials variables or

the Directive variables. Third, the fl,,e point decreases in the

R2 values listed for Alternative Models ml and -2 indicate that

both the Materials variables and the Directive variables are also

measuring unique aspects of task difficulty. Thus, although the

18



Process variables appear to be the most important, neither the

Materials variables nor the Directive variables, can be excluded

without diminishing predictive capability.

Figure 3 plots the residuals obtained from fitting the full

model against percent correct. Negative residuals indicate that

the task was easier than predicted, that is, easier than other

tasks with similar values of the item feature variables. The plot

shows a scatter of low positive and negative residuals among tasks

with percent correct values below 90 percent. This suggests that

the item feature variables have been successful at predicting task

difficulty among tasks with low percent correct values. However,

several high negative residuals occur among the tasks with percent

correct values above 90 percent. This suggests that the item

feature variables have not provided useful information pertaining

to gradations of difficulty among extremely easy tasks..

Insert Figure 3 about here

7.0 Discussion

The two-stage Empirical Bayes regression model provides a

link between Kirsch and Mosenthal's cognitive model for solving

document literacy tasks and the psychometric IRT model for task

difficulty. The integrated approach led to the following

findings: (i) document literacy task difficulty was highly related

'This explains why the R2 is slightly lower in this analysis than in
Kirsch and Mosenthal's regression analysis of percents-correct: task features
account poorly for differences among easy items, which are minimized in the
percent-correct metric but expanded in the Rasch difficulty (logit) metric.
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to the Process variables and somewhat less related to the

Materials variables and the Directive variables; and (ii) The

cognitive model for explaining task difficulty was deficient at

explaining gradations of difficulty among extremely easy tasks

Of course these results are based on only the present data, which

effectively fit a regression model with nine independent variables

to sixty-one observations. Extensions of the literacy survey

currently in progress, however, should yield response data on as

many as a hundred new document literacy tasks written to similar

specifications. If these subsequent assessments reveal similar

findings, an examination of tasks with high negative residuals

will be conducted in order to determine factors associated with

extremely easy document literacy tasks. Knowledge of such factors

should prove useful for document design and construction

It is increasingly becoming recognized that merely high

reliability coefficients do not guarantee a "good" test, nor do

high predictive relationships guarantee a "valid" one. The orus

has been placed (appropriately!) upon the tester to demonstrate

that the skills tapped in an educational test are in fact tihose

deemed important to measure. The two-stage approach exemplified

in this paper capitalizes upon advances in the psychometric and

cognitive disciplines to address this need. IRT models, ,;hich

provide measures of overall proficiencY fo- making decisions ihout

individual examinees, also define implicitly the variablt being

measured through implications of correct respons. at the 'vr1, os

levels of proficiency. A demonstration that this empirical
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characterization of proficiency can be largel; ac-oun ed for hx'

the key features of items from the perspective of a cognitive

model argues strongly for the construct validity of the measure.

constitutes a theoretical foundation for further item development.

and provides an additional means of detecting items that tap

irrelevant skills.
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Table 2

Intercorrelations among Item Features

Materials Directives Process

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Materials
(1) No. of OCs 1.00 .25 .09 .52 .31 -.20 -.00 .13 -.10 -.45 -.40 -.19
(2) No. of OCs

Embedded 1.00 .74 .18 -.18 -.05 .29 .41 -.04 -.02 -.29 -.34

(3) Levels of OC
Embeddings 1.00 .12 -.12 .15 .41 .44 .03 .03 -.16 -.21

(4) No. of SPEs 1.00 .25 -.23 .31 .11 .17 -.15 -.53 -.39
(5) No. of SPEs

Embedded 1.00 .26 -.15 -.13 -.02 .08 -.05 .00
(6) Levels of SPE

Embeddings 1.00 -.13 -.17 .08 -.68 .09 .09

Directives
(7) No. of OCCs 1.00 .50 .50 -.07 -.41 -.32
(8) Levels of OC

Embeddings 1.00 -.06 -.03 -.22 -.21

(9) No. of SPEs 1.00 -.02 - .40 -.46

Process
(10) Degrees of

Correspondence 1.00 -.38 -.62
kil) Type of

Information 1.00 -.03
(12) Plausibility of

Distractors 1.00
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Table 3

Proportions of Exact Agreement Among Raters

Variable Proportion of Agreement

Materials Variables

Number of OCs 100 %
Number of Embedded OCs 100 %
Level of OC Embedding 98 %
Number of SPEs 96 %
Number of Embedded SPEs 93 %
Level of SPE Embedding 88 %

Directive Variables

Number of OCs 96 %
Level of OC Embedding 99 %
Number of SPEs 90 %

Process Variables
Degrees of Correspondence 95 %
Type of Information 86 %
Plausibility of Distractors 90 %

27



Table 4

Results of Fitting an Unrestricted Rasch Model

Task B a Correct Task 8 a Correct
1 -4.051 0.120 99 31 -1.110 0.054 79
2 -3.503 0.088 98 32 -2.128 0.047 91
3 -3.277 0.126 97 33 -2.412 0.053 94
4 -3.19F 0.121 97 34 -0.912 0.051 76
5 -3.468 0.147 96 35 -0.201 0.047 56
6 -2.638 0.058 96 36 -1.016 0.053 80

7 -4.153 0.218 96 37 -2.233 0.078 94
8 -2.914 0.110 94 38 -2.641 0.093 96
9 -2.758 0.098 94 39 -1.157 0.055 81

10 -1.967 0.WU 91 40 -2.129 0.0/ 93
11 -1.590 0.060 89 41 -2.920 0.110 94
12 -1.104 0.053 81 42 -1.842 0.067 90
13 -2.247 0.078 92 43 -1.894 0.068 90
14 -1.252 0.056 80 44 -1.819 0.066 89
15 -1.217 0.057 80 45 -1.883 0.068 91
16 -0.420 0.048 68 46 -2.062 0.071 90
17 -0.384 0.046 68 47 -1.133 0.053 78
18 -1.802 0.066 88 48 -1.245 0.055 79
19 -0.613 0.048 69 49 -1.409 0.057 85
20 -0.203 0.046 62 50 -1.884 0.069 86
21 0.294 0.045 48 51 -2.413 0.083 94
22 -0.471 0.047 67 52 -1.783 0.066 89
23 -1.734 0.063 89 53 -1.365 0.057 84
24 -1.968 0.068 92 54 -1.622 0.062 37
25 -1.896 0.066 90 55 -1.095 0.054 81
26 -0.457 0.047 67 56 0.115 0.046 52
27 -1.712 0.063 88 57 -0.467 0.047 62
28 -1.860 0.066 88 58 -0.162 0.046 63
29 -0.749 0.049 73 59 1.244 0.053 28
30 -0.567 0.048 68 60 0.055 0.046 59

61 -2.726 0.096 97

Note: Rasch difficulty estimates are not strictly monotonically related to
proportions correct in this analysis because of the matrix-sampling data
collection design; the percents-correct reflect performance in different
randomly equivalent samples of respond-.nts
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Table 5

Estimated Regression Parameters
and Approximate R2 Values

Full Alternative Models
Variable Type Model #1 2 =3

Intercept -1.404 -1.462 -1.409 -1.603

No.OCs MAT -0.096 e -0.191 0.157
No.Emb.OCs MAT 0.024 e 0.048 0.069
No.SPEs MAT 0.383 e 0.442 0.459
No.Emb.SPEs MAT 0.159 e 0.090 0.099

No.OCs DIR 0.212 0.210 e 0.245
No.SPEs DIR O.14Q 0.163 e 0.364

TYPINFO PROC 0.268 0.351 0.327 e
DEGPLAUS PROC 0.202 0.229 0.264 e
DEGCORR PROC 0.360 0.285 0.372 e

Std.Dev. ( ) 0.467 0.538 0.534 0.689

Approximate R2  .81 .75 .76 .59

e-variable was intentionally excluded from the model
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For Stuffed and Running Noses:

Dosage:

Adults - 2 teaspoons every 4 hours;
Children over 6 years - 1 teaspoon
every 4 hours.

Caution:

Unless directed by physician, do not

exceed recommended dosage. If drow-

siness occurs, do not drive or oper-
ate dangerous machinery. Individuals

with high blood pressure, heart diseasej
diabetes, or thyroid disease should use

only as directed by a physician.

Figure 1. The Medicine Label document.
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I *I\OC purpose
2 J\SPE For Stuffed Noses
3 AND \SPE For Running Noses
4 *AND I\OC Dosage

5 1 I\SPE *take
6 1 [\AG Adults

7 I I\OBJ teaspoons
8 I I \ATT 2
9 \TEMP hours

10 1 J\ATT 4

11 \ATT every
12 AND \SPE *take
13 I\AG children
14 1 \ATT over six
15 I',ATT teaspoon

16 \ATT 1
17 \TEMP hours
18 I\ATT 4
19 \ATT every

20 *AND \OC caution

21 I\SPE do exceed
22 1 *\AG you
23 I\OBJ dosage
24 1 \ATT recommended
25 1 I\NEG not
26 unless COND \SPE directed
27 I\AGT by physician
28 * \OBJ you

29 *AND {\SPE do drive
30 OR (\SPE do operate
31 *I\AG you
32 1 I\OBJ machinery
33 1 \ATT dangerous
34 1 \NEG not
35 IfjCOND\SPE occurs
36 \AG drowsiness
37 *AND \SPE should use

38 I\AG individuals with
39 1 *ORI\ATT blood pressure
40 1 I \ATT high
41 1 *ORI\ATT heart disease

42 I *\ATT high

43 1 *ORI\ATT diabetes
44 1 *\ATT high
45 OR \ATT thyioid disease
46 *\ATT high
47 as COND \SPE directed

48 i\MAN only
49 \AG by physician

Figure 2. A parsing of the Medicine Label document.
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